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Abstract 
Drought, a persistent natural disaster, poses significant 

challenges to ecosystems, agriculture, water resources 

and socio-economic stability worldwide. The evolution 

of drought forecasting models reflects a continuous 

pursuit of greater accuracy and lead time, particularly 

highlighted by events like the 2012 US Midwest 

drought. Traditional models relying on empirical 

relationships have faced limitations in capturing the 

complexities of meteorological droughts, leading to the 

exploration of AI-driven approaches. This 

comprehensive review explores the landscape of 

drought forecasting, focusing on the integration of AI 

and hybrid models. The advantages of AI, such as its 

ability to handle nonlinear relationships and vast 

datasets, have revolutionized drought assessment and 

prediction.  

 

Various AI techniques including Neural Networks, 

Support Vector Machines, Fuzzy Logic and Deep 

Learning, offer unprecedented accuracy and real-time 

monitoring capabilities. Hybrid models, combining AI 

with traditional statistical or dynamical approaches, 

show promise in enhancing predictive capabilities. The 

integration of Wavelet Transform with Neural 

Networks and other hybrid strategies has demonstrated 

success in capturing non-linear relationships and 

improving prediction accuracy. The future of AI-driven 

drought forecasting lies in collaborative efforts, 

innovative research and ethical practices. By 

navigating these challenges and seizing opportunities, 

AI models can contribute significantly to building 

resilience and sustainable management of water 

resources globally. 
 

Keywords: Drought Forecasting, Artificial Intelligence, 

Machine Learning. 

 

Introduction 
Drought, an enduring and pervasive natural disaster, poses 

formidable challenges to ecosystems, agricultural 

productivity, water resources and socio-economic stability 

worldwide1. Defined by prolonged periods of deficient 

precipitation, droughts manifest in various forms, ranging 

from meteorological deficits to agricultural and hydrological 

distress, ultimately exerting profound impacts on human 

livelihoods and the environment2,3. The severity and 

unpredictability of drought events underscore the critical 

necessity for advanced and precise forecasting models to 

mitigate their deleterious effects4. Throughout history, 

humanity has grappled with the devastating repercussions of 

droughts, often witnessing their catastrophic toll on 

communities, particularly in vulnerable regions.  

 

The history of drought prediction models reflects an ongoing 

quest for methods to anticipate, monitor and respond to these 

natural phenomena. From early rudimentary methods 

relying on observed climatic patterns to the advent of 

sophisticated statistical models, the evolution of drought 

forecasting has been marked by a continual pursuit of greater 

accuracy and lead time5–7. The 2012 drought in the US 

Midwest stands as a stark reminder of the urgent need for 

robust early warning systems. This event, characterized by 

prolonged dry spells and scorching temperatures, inflicted 

widespread agricultural losses, water scarcity and economic 

disruption8,9. It served as a poignant catalyst for re-

evaluating existing drought prediction methodologies and 

exploring novel approaches to enhance forecasting 

precision.  

 

Traditional drought prediction models have historically 

relied on empirical relationships between climatic variables 

and observed historical patterns10,11. These models, while 

providing valuable insights, often struggled to capture the 

complex interplay of factors influencing drought 

dynamics12. Meteorological droughts, characterized by 

prolonged deficits in precipitation, present particularly 

intricate challenges due to their nonlinear and multivariate 

nature 13. The limitations of traditional models in accurately 

forecasting such events have spurred the exploration of 

alternative methodologies including the integration of 

artificial intelligence (AI) and machine learning 

techniques14. 

 

The integration of AI into the realm of drought assessment, 

monitoring and prediction has brought about a seismic shift 

in our understanding and management of this critical 

environmental phenomenon15. Leveraging advanced 

computing methods such as Neural Networks, Support 

Vector Machines (SVM), Fuzzy Logic and others, 

researchers and experts are now equipped with powerful 

tools to unravel the complex web of climatic factors that 
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contribute to the onset and progression of droughts16,17. One 

of the most significant advantages offered by AI-driven 

approaches is the unprecedented level of accuracy, they 

provide in forecasting and monitoring drought 

conditions18,19. These technologies have the capability to 

analyze vast amounts of data from various sources including 

satellite imagery, weather stations, soil moisture sensors and 

more.  

 

By processing this data through sophisticated algorithms, AI 

can identify patterns and correlations that may escape 

traditional statistical methods20,21. Real-time monitoring is 

another game-changing aspect facilitated by AI in drought 

management. With AI-powered systems and continuously 

processing incoming data streams, stakeholders can receive 

up-to-the-minute information on changing drought 

conditions 22,23. This enables timely and informed decision-

making, allowing for proactive interventions and the 

implementation of effective mitigation strategies.  

 

The emergence of hybrid forecasting systems represents a 

further evolution in this field24,25. By combining the 

strengths of AI with traditional statistical or dynamical 

models, these hybrid approaches offer enhanced predictive 

capabilities26. One such example is the integration of 

Wavelet Transform with Neural Networks, which has 

demonstrated remarkable success in capturing non-linear 

relationships and improving prediction accuracy. Successful 

case studies of these hybrid models abound across the globe. 

In various regions facing diverse climatic challenges, these 

AI-enhanced systems have proven their mettle. From 

predicting the onset of droughts in arid regions to monitoring 

soil moisture levels in agricultural landscapes, these 

technologies are transforming how drought management is 

approached27–29. 

 

For instance, in agriculture, AI-powered systems can 

provide farmers with precise information on when and how 

much to irrigate their crops, optimizing water usage and 

maximizing yields 30. In urban planning, AI-driven 

assessments of water availability can inform infrastructure 

development and water resource management strategies 31. 

In essence, the fusion of AI with drought assessment and 

prediction represents a paradigm shift towards a more 

proactive, data-driven and efficient approach in managing 

one of the most pressing challenges posed by climate change 
32. As these technologies continue to evolve and become 

more accessible, their potential to mitigate the impacts of 

droughts and build resilience in vulnerable regions grows 

ever more promising. 

 

The integration of technological advancements, particularly 

remote sensing data and meteorological observations, has 

further enriched the capabilities of drought prediction 

models. Remote sensing technologies such as satellite 
imagery and ground-based sensors, provide valuable 

insights into soil moisture levels, vegetation health and 

atmospheric conditions, facilitating more precise and 

comprehensive drought monitoring 2,33,34. Despite these 

advancements, challenges persist in the domain of drought 

prediction. Climate change-induced uncertainties, limited 

data availability in certain regions and the complexities of 

modeling non-linear drought dynamics continue to pose 

significant hurdles 35. However, these challenges also 

present opportunities for further innovation and 

collaboration across scientific disciplines.  

 

This comprehensive review aims to explore the evolving 

landscape of drought forecasting, with a specific focus on 

the integration of AI and hybrid models. By synthesizing 

insights from recent studies, examining case studies from 

diverse regions and discussing the advantages and 

limitations of various approaches, this review seeks to 

provide a holistic understanding of the current state of 

drought prediction methodologies.  Furthermore, it aims to 

outline future directions for research, emphasizing the need 

for enhanced data collection, refined modeling techniques 

and interdisciplinary collaborations to advance the field of 

drought forecasting and contribute to sustainable water and 

agricultural management globally.  

 

The review will delve into the historical context of drought 

prediction, the role of AI in assessment, monitoring and 

prediction and the application of hybrid models for 

meteorological drought forecasting. The exploration of 

opportunities and challenges in this field will provide a 

roadmap for improving drought forecasting accuracy and 

lead time, crucial for sustainable water and agricultural 

management. This comprehensive review aims to serve as a 

valuable resource for researchers, policymakers and 

stakeholders involved in drought prediction and mitigation 

efforts. It synthesizes diverse perspectives, from traditional 

models to cutting-edge deep learning algorithms, providing 

a holistic understanding of the challenges, advancements and 

future directions in the field of drought forecasting. Through 

this exploration, the review seeks to contribute to the 

development of innovative solutions to address the pressing 

challenges posed by droughts and their far-reaching impacts 

on global ecosystems and societies. 

 

Advancing Drought Forecasting: The Superiority of 

Artificial Intelligence Models 

Traditionally, the field of drought forecasting has relied 

heavily on physically based dynamic models and statistical 

approaches. Physically based models, rooted in the 

fundamental equations governing atmospheric dynamics, 

have been instrumental in understanding the complex 

interactions between the land, atmosphere and ocean 36–38. 

These models, developed over decades, utilize partial 

differential equations to simulate the dynamic processes 

influencing drought conditions. However, despite their 

sophistication, physically based models are not without their 

limitations. One of the primary challenges with physically 
based models is the inherent uncertainty stemming from 

simplified assumptions and the sensitivity to initial 

conditions12.  
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Small variations in the initial values can lead to significant 

divergences in predicted outcomes, limiting the precision of 

drought forecasts. The work of pioneers like Henri Poincaré 

and Edward Lorenz highlighted the fundamental role of 

accurate initial states in predicting chaotic yet deterministic 

systems, setting the stage for the ongoing quest for improved 

predictability 39,40. On the other hand, statistical models offer 

an alternative approach to drought forecasting by focusing 

on the historical patterns and relationships within drought 

indicators. These models leverage the temporal persistence 

of drought indicators such as the Standardized Precipitation 

Index (SPI) and Palmer Drought Severity Index (PDSI), as 

well as teleconnections between different types of 

droughts41,42. By analyzing these relationships, statistical 

models aim to predict future drought conditions based on 

past observations and trends. 

 

The emergence of AI models has brought about a significant 

transformation in the field of drought forecasting43. AI 

including Neural Networks, Support Vector Machines and 

Deep Learning algorithms, has revolutionized our approach 

in predicting droughts by offering unparalleled capabilities 

in handling complex data relationships and processing vast 

datasets rapidly44. Physically based dynamical models and 

statistical approaches have long been the mainstays of 

drought forecasting. However, compared to these traditional 

methods, AI models demonstrate several distinct 

advantages. One of the most significant advantages lies in 

their ability to capture nonlinear relationships within drought 

data, a task that linear models often struggle with. By 

identifying intricate patterns and correlations, AI models 

provide a more nuanced understanding of drought 

dynamics45–47. 

 

Moreover, AI models exhibit adaptability and continuous 

learning, allowing them to stay updated with changing 

conditions and incorporate new data seamlessly. This 

adaptability is particularly crucial in dynamic environments 

where drought conditions evolve rapidly over time. 

Additionally, AI models excel in handling the spatial and 

temporal complexities inherent in drought forecasting, 

offering detailed insights into large geographical regions 

over extended periods48–50. When compared to physically 

based dynamic models and statistical approaches, AI models 

offer several key advantages. They can capture 

nonlinearities more effectively, adapt to changing conditions 

and learn from new data continuously. Furthermore, AI 

models are proficient in handling big data, providing 

comprehensive insights into drought conditions with 

improved spatial and temporal resolution51. Additionally, AI 

models offer probabilistic forecasting, presenting a range of 

possible outcomes along with their likelihoods, enabling 

decision-makers to assess the risk of various drought 

scenarios and plan accordingly. 

 

Drought Forecasting using Various AI Techniques 

In recent years, the integration of AI techniques has 

revolutionized the field of drought assessment and 

forecasting. Artificial Neural Network (ANN) stands as a 

prominent computational model inspired by biological 

neural networks. Widely acknowledged for its ability to 

capture complex relationships between inputs and outputs, 

ANN has emerged as a valuable tool in hydrologic 

forecasting52,53. Its architecture typically comprises of layers 

layers: input, hidden and output layers, each consisting of 

interconnected neurons54.  

 

In the context of drought assessment and prediction, ANN 

has been extensively employed. For instance, researchers 

have successfully utilized ANN models to predict drought 

onset, duration and severity42,55.  

 

By incorporating climatic parameters such as precipitation, 

temperature, wind speed and humidity as input data, ANN 

models have demonstrated higher accuracy compared to 

traditional statistical methods, particularly in arid and semi-

arid regions56–58. Moreover, ANN's capability to handle 

nonlinear relationships and its flexibility in modeling 

complex systems make it a preferred choice in drought 

forecasting endeavors. 

 

Support Vector Machine (SVM) is another powerful AI 

technique employed in drought forecasting. SVM operates 

by constructing hyperplanes in multidimensional space to 

separate different class labels, thereby facilitating 

classification tasks59,60. In the realm of drought prediction, 

SVM models have exhibited high accuracy and low error 

rates. Utilizing input parameters such as temperature, 

humidity and precipitation, SVM has outperformed other 

models in forecasting drought conditions, especially in semi-

arid regions61–63. For instance, SVM models have been 

successfully applied in forecasting drought in provinces like 

North Khorasan in Iran, showcasing superior performance 

compared to ANN and ANFIS models 64. By leveraging 

SVM's ability to handle both regression and classification 

tasks, researchers have achieved significant advancements in 

accurately predicting drought events and their impacts on 

water resources61. 

 

Extreme Learning Machine (ELM) is a feedforward neural 

network known for its fast-learning speed and efficient 

training process. In the domain of drought assessment and 

prediction, ELM has emerged as a promising AI 

technique65,66. By random assignment of weights and biases 

in hidden layers and analytically determining output 

weights, ELM models offer rapid computation and high 

generalization performance.  

 

Researchers have successfully utilized ELM models for 

drought prediction in various regions. Through the 

integration of wavelet preprocessing techniques, ELM 

models have demonstrated superior accuracy in assessing 

drought conditions and predicting future events. The 
computational efficiency and effectiveness of ELM models 

make them invaluable tools for decision-making in drought-

prone regions67–72. 



     Disaster Advances                                                                                                                     Vol. 17 (12) December (2024) 

https://doi.org/10.25303/1712da058071        61 

Deep Learning, characterized by complex neural network 

architectures, has garnered significant attention for its 

remarkable capabilities in drought forecasting44. With its 

ability to recognize intricate patterns and relationships in 

data, deep learning models have exhibited superior 

performance in assessing drought conditions73. By 

leveraging deep neural networks, researchers have achieved 

enhanced forecasting capabilities, particularly in regions 

prone to agricultural and ecological impacts of drought 74. 

Deep learning approaches, such as Deep Belief Networks 

(DBN), have been utilized to predict long-term drought 

events with greater accuracy compared to traditional models 

like Multilayer Perceptron (MLP) and Support Vector 

Regression (SVR)75–77.  

 

Additionally, deep learning techniques have proven effective 

in monitoring meteorological and agricultural droughts 

using satellite data, providing valuable insights for drought 

management and preparedness77. Fuzzy Logic, renowned for 

its flexibility and ability to handle uncertain and imprecise 

data, has found extensive applications in drought analysis 

and forecasting43.  

 

By incorporating fuzzy logic with Geographic Information 

System (GIS) tools, researchers have developed robust 

frameworks for drought management and risk   

assessment78–80. Fuzzy logic-based models have 

demonstrated effectiveness in accurately forecasting drought 

events with longer lead times, thereby enabling proactive 

measures to mitigate drought impacts78. Moreover, the 

integration of fuzzy logic with other techniques such as 

wavelet analysis, has further improved the accuracy and 

reliability of drought forecasting models81. Through the 

utilization of fuzzy logic, researchers have made significant 

strides in understanding the spatial and temporal variability 

of drought, leading to more effective early warning systems 

and decision support tools43,82,83. 

 

Adaptive Neuro Fuzzy Inference System (ANFIS) combines 

the strengths of neural networks and fuzzy logic to provide 

accurate and reliable predictions in drought forecasting84,85. 

ANFIS models, with their adaptive learning capabilities, 

have been widely adopted for various drought assessment 

tasks. By utilizing different timescales and input parameters 

such as Standardized Precipitation Index (SPI) and 

Standardized Precipitation Evapotranspiration Index (SPEI), 

ANFIS models have demonstrated high accuracy and 

reliability in forecasting drought events41. Moreover, ANFIS 

models offer advantages such as improved interpretability 

and reduced computational complexity, making them 

valuable tools for decision-making in drought-prone regions. 

 

Deep Learning for Drought Forecasting 

Deep learning, a subset of machine learning, has emerged as 

a powerful tool in the realm of drought forecasting. Within 
this domain, Convolutional Neural Networks (CNNs) have 

proven invaluable, particularly in processing satellite images 

for insightful predictions86. These CNN models, such as 

VGGNet and AlexNet, are tailored with specific 

architectures, often comprising of convolutional layers, 

pooling layers and dense layers79,80. By utilizing techniques 

like carpooling and average pooling, these models can 

extract essential features from images while efficiently 

managing computational complexity 88. Notably, studies 

have showcased the superiority of CNNs over other models, 

exhibiting better accuracies when incorporating indices such 

as the Normalized Difference Vegetation Index (NDVI)89–91.  

 

On the other hand, Recurrent Neural Networks (RNNs) find 

their niche in handling time series data, a crucial component 

in drought prediction92. Models like Convolutional Long 

Short-Term Memory Neural Networks (ConvLSTM) excel 

in capturing both spatial and temporal variabilities in climate 

data, providing a comprehensive understanding of evolving 

drought patterns93,94. Moreover, the use of Long Short-Term 

Memory (LSTM) models has demonstrated remarkable 

performance, especially when leveraging historical data 

alongside relevant climatic variables. 

 

Delving deeper into neural network architecture, Deep 

Belief Networks (DBNs) offer a generative approach to 

drought analysis. These networks, constructed with layered 

Restricted Boltzmann Machines (RBMs), have been pivotal 

in precipitation forecasting, showcasing optimal 

performance compared to traditional machine learning 

approaches95. Furthermore, the integration of Generative 

Adversarial Networks (GANs) has paved the way for 

generating artificial data, an asset in refining drought 

prediction models96. In pursuit of even greater accuracy, 

researchers have ventured into hybrid models, combining the 

strengths of various deep learning architectures. These 

models such as Broad Learning (BL) models with improved 

signal decomposition methods and hybrid Empirical Mode 

Decomposition-Deep Belief Network (EMD-DBN) models, 

have demonstrated superior predictive capabilities97.  

 

Additionally, the fusion of decision tree models with Season 

AutoRegressive Integrated Moving Average (SARIMA) 

models has proven effective in classifying data into rainfall 

or drought categories, offering valuable insights into the 

Keetch-Byram Drought Index values 75. Through these 

innovative applications, deep learning continues to 

revolutionize the field of drought forecasting, offering 

unparalleled precision and insight into this critical 

environmental challenge. 

 

Hybrid AI Models for Meteorological Drought 

Prediction 
Meteorological drought prediction presents a complex 

challenge due to the interplay of various climatic factors and 

their impact on water availability. In recent years, the 

integration of AI with traditional statistical or dynamical 

approaches has emerged as a promising solution. These 
hybrid models harness the strengths of both AI techniques 

and existing forecasting methods, offering improved 

accuracy and insights into meteorological droughts. Hybrid 
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models, by combining the strengths of AI and traditional 

methods, address some of the limitations inherent in 

standalone approaches. They can effectively capture the 

non-linear relationships and intricate patterns present in 

meteorological data, leading to enhanced prediction 

accuracy. Additionally, these models are more adaptable to 

changing environmental conditions, providing more robust 

and reliable forecasts98–101. 

 

One notable example of a successful hybrid model for 

meteorological drought prediction is the combination of 

Wavelet Transform with Neural Networks. The Wavelet 

Transform is a mathematical tool used to decompose time-

series data into different frequency components, allowing for 

the identification of patterns at different scales102,103. In the 

context of drought forecasting, the Wavelet Transform is 

used to preprocess meteorological data, extracting relevant 

features and reducing noise. These processed data are then 

fed into Neural Networks, which excel at learning complex 

patterns and relationships. The Neural Networks analyze the 

transformed data to predict future drought conditions based 

on historical patterns and trends.  

 

Numerous case studies have demonstrated the effectiveness 

of hybrid AI models in meteorological drought prediction 

across different regions102,104–107. Studies have shown that 

hybrid models offer superior accuracy in drought prediction 

compared to standalone methods Pathak et al.106 found that 

hybrid models, such as those combining Neural Networks, 

Support Vector Machines and Fuzzy Logic, demonstrate 

enhanced accuracy in forecasting drought conditions.  

 

Forecasting daily river flow in tropical areas has shown great 

efficacy for the Enhanced Extreme Learning Machine 

(ELM) model modified with Complete Orthogonal 

Decomposition (COD) as a hybrid technique66. This model 

showed that it could produce accurate and dependable 

forecasts, which is crucial for managing water resources in 

these kinds of areas. The assessment of spatiotemporal 

drought patterns has been made possible using SPI and 

Standardized Precipitation Evapotranspiration Index (SPEI) 

in hybrid models108–111. These indices provide important 

information on the intensity and spread of drought 

occurrences. They are calculated using rainfall grid data 

from satellites. 

 

The effectiveness of the Wavelet-Based Extreme Learning 

Machine (W-ELM) model in forecasting Australia's monthly 

Effective Drought Index (EDI) was assessed by Jalalkamali 

et al72. This hybrid model beats existing models like wavelet-

based Least Squares Support Vector Regression (w-LSSVR) 

and wavelet-based Artificial Neural Networks (w-ANN) by 

using wavelet pre-processing. Rohith et al112 studied the 

efficacy of Wavelet-Based Artificial Neural Networks (W-

ANN) models using indices such as the Standardized Water 
Storage Index (SWSI) and the Standardized Index of Annual 

Precipitation (SIAP). These models were useful for 

estimating and evaluating drought conditions.  

Researchers are increasingly turning to hybrid modeling 

approaches to address the growing challenges posed by 

droughts. These models offer a pathway to more accurate, 

reliable and timely predictions, aiding policymakers, water 

resource managers and agriculturists in implementing 

effective mitigation strategies12,42,82,113. As climate change 

intensifies, the development and application of hybrid 

models will continue to play a pivotal role in understanding 

and mitigating the impacts of drought events. In addition to 

the studies, researchers have explored various hybrid 

optimization modeling approaches to predict droughts in 

different regions. Evolutionary neuro fuzzy methods such as 

Adaptive Neuro Fuzzy Inference Systems (ANFIS) with 

Particle Swarm Optimization (PSO), Genetic Algorithms 

(GA), Colony Algorithm (ACO) and Butterfly Optimization 

Algorithm (BOA), have been evaluated using SPI114–120. 

These approaches offer valuable insights for hydrologists, 

water resource planners and agriculturists working in arid 

and semi-arid regions. Table 1 shows the application of 

different AI applications applied in drought prediction and 

management. 

 

Challenges in Drought Forecasting using AI Models 

While AI models have shown immense promise in 

improving the accuracy and timeliness of drought 

forecasting, several challenges persist in the field. These 

challenges must be addressed to further enhance the 

effectiveness of AI-driven approaches: 

 
a) Data Quality and Availability: Many regions, especially 

in developing countries, lack sufficient historical data on 

climatic variables. This scarcity hampers the training and 

validation of AI models. Inaccurate or incomplete data can 

lead to biased model predictions. Ensuring data accuracy and 

reliability is crucial for robust forecasting. 

 

b) Model Interpretability and Transparency: Black Box 

nature of deep learning, Complex deep learning models 

often lack transparency, making it challenging to understand 

the reasoning behind predictions. Developing methods to 

explain AI model predictions is essential for building trust 

among stakeholders and decision-makers. 

 

c) Incorporating Non-Climate Factors: Drought impacts 

are influenced by socio-economic factors such as population 

density, agricultural practices and infrastructure. Integrating 

these factors into AI models can improve forecasting 

accuracy. Understanding the interaction between ecosystems 

and drought conditions is crucial. AI models should consider 

ecological variables for comprehensive predictions. 

 

d) Scalability and Operational Implementation: Ensuring 

that AI models can scale to cover large geographical areas 

and varying spatial resolutions is essential for widespread 

application, bridging the gap between research and 
operational use is critical. Implementing AI-driven tools in 

real-world decision-making processes requires collaboration 

with stakeholders. 
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e) Computational Resources and Infrastructure: Training 

complex AI models requires significant computational 

resources and infrastructure, which may not be readily 

available in all settings. Leveraging cloud computing can 

mitigate these challenges, but cost and accessibility remain 

concerns, especially for resource-constrained regions. 

 

f) Transferability and Generalization: Ensuring that AI 

models trained in one region or dataset can be effectively 

applied to other regions with different environmental 

conditions, AI models should generalize well to unseen data, 

avoiding overfitting to specific datasets. 

 

Table 1  

Show the different AI application applied in drought predication and management 

Applications Objective Contribution 

Drought forecasting using AI 

methods (GRNN, LSSVM, 

GMDH, ANFIS-FCM)121 

Investigate accuracy of AI methods in 

forecasting MSPI in Iran 

Found GMDH to have best accuracy for short-

term forecasting, acceptable long-term forecast 

up to 2-3 months ahead, better performance in 

mountainous arid-cold regions 

Forecasting drought using 

MLP ANN, ANFIS, SVM, 

ARIMAX122 

Compare models for SPI forecasting in 

Yazd, Iran 

ARIMAX performed best for 9-month forecast 

of SPI values 

Predict SPEI using AI models 

(MLPNN, SVR, ANFIS, EDT) 

in Iran123 

Determine best input data sets and 

predict SPEI at synoptic stations 

Identified best models (W-MLPNN, W-SVR) 

for different time scales, enhanced AI efficiency 

in longer time scales 

Drought forecast using ANNs 

and SPI in Fars Province, 

Iran124 

Develop regional drought forecast 

method with ANNs 

Achieved 73% agreement with observed maps, 

spatial and temporal relationships in forecast 

Forecasting SPEI using EWT, 

DWT, MLP, GMDH in Iran125 

Investigate machine learning models for 

SPEI forecast 

EWT improved performance, best results with 

EWT and MLP-EKF 

CNN-LSTM model for SPEI 

drought forecasting in 

Turkey126 

Develop CNN-LSTM model for 

meteorological drought forecast 

CNN-LSTM outperformed benchmarks, 

accurate SPEI prediction 

NDVI forecasting with ANN 

using SOI and NAO indices in 

Iran127 

Forecast NDVI in Ahar-chay Basin 

with ANN 

Predicted NDVI using climatic signals with high 

accuracy 

Drought forecasting in 

Gorganrood, Iran using SPI128 

Compare RMLP, RSVR and ARIMA 

for SPI forecasting 

ICA-RMLP, ICA-RSVR outperformed 

ARIMA, practical for drought warning system 

Comparison of ANFIS variants 

in SPI forecasting in Iran129 

Investigate ANFIS-PSO, ANFIS-GA, 

ANFIS-ACO, ANFIS-BOA 

Evolutionary methods outperformed classical 

ANFIS for SPI forecasting 

Drought forecasting using 

LSTM in Australia130 

Use LSTM to predict SPEI, compare 

with other ML methods 

Achieved R2 > 0.99, AUC 0.82-0.83, improved 

drought forecasting 

SHDI forecasting using hybrid 

optimization-ANN131 

Forecast SHDI using hybrid models, 

compare with ANN 

Hybrid models outperformed conventional 

ANN, PSO performed best 

Drought estimation models 

using W, ANFIS, SVM, ANNs 

in Turkey132 

Develop drought estimation models, 

compare different approaches 

W-ANFIS model performed best for 6-months 

period 

Drought forecasting using IoT, 

ANN, ARIMA in India133 

Forecast drought using IoT and ANN, 

compare with ARIMA 

Achieved high accuracy, sensitivity, specificity 

with IoT-ANN-ARIMA 

SPEI estimation with ML 

models in Tibetan Plateau134 

Use ML models (RF, XGB, CNN, 

LSTM) for SPEI estimation, compare 

scenarios 

Achieved good fits with RF, XGB models for 

SPEI-3, SPEI-6 

ANN with Effective Drought 

Index in Kenya135 

Develop ANN models with EDI for 

drought forecasting in Kenya 

Achieved accuracies up to 98%, enhancement to 

current solutions 

AI methods for MSPI 

forecasting in Iran136 

Investigate AI methods (GRNN, 

LSSVM, GMDH, ANFIS-FCM) for 

MSPI 

GMDH showed best accuracy, promising results 

for multivariate drought forecasting 

Drought Prediction with SVR 

and Optimization137 

Hybridize SVR with PSO and HHO for 

EDI prediction in Uttarakhand State, 
India 

SVR-HHO model outperformed SVR-PSO 

model in predicting EDI, providing reliable 
predictions for the study area 



     Disaster Advances                                                                                                                     Vol. 17 (12) December (2024) 

https://doi.org/10.25303/1712da058071        64 

Short-term Meteorological 

Drought Prediction138 

Predict short-term drought using hybrid 

ML models with SPI as the index 

Hybrid VMD-GPR model performed best for 1-

month, 3-month and 6-month time scales, 

outperforming standalone models 

Statistical and Hybrid Models 

for SPI6 Forecast139 

Investigate ESP, wavelet machine 

learning and hybrid models for SPI6 

forecasting in China 

Hybrid model combining statistical and dynamic 

models improved SPI6 forecast, ESP and 

wavelet models outperformed other statistical 

models 

Hydrological Drought 

Forecasting with 

Optimization140 

Forecast short-term SHDI using hybrid 

of optimization algorithms with ANN 

PSO outperformed other optimization 

algorithms, hybrid model better than 

conventional ANN in SHDI forecasting 

Fusion-based Approach for 

Drought Estimation141 

Use fusion methodologies with 

remotely sensed data for SPI estimation 

in Iran 

ORNESS-OWA method showed superior 

performance, effective in SPI estimation using 

remote sensing data, especially in drought-prone 

regions 

LSTM and ARIMA Hybrid for 

SPEI Prediction142 

Combine ARIMA and LSTM for SPEI 

prediction in Iran 

Hybrid model improved short-term drought 

prediction, ARIMA-LSTM best for 6-month 

scale 

Hybrid Models for SPI 

Prediction143 

Combine preprocessing, permutation 

entropy and AI methods for SPI 

prediction in Iran 

Hybrid models showed significantly better 

performance compared to single models, 

effective for drought modeling 

Dynamical-Statistical 

Framework for Precipitation144 

Use hybrid framework combining 

dynamical (NMME) and statistical 

(analog-year) models for precipitation 

prediction 

Improved seasonal precipitation predictions in 

southwestern United States, balance between 

positive and negative anomalies 

Dynamic-LSTM Model for 

Drought Prediction145 

Develop dynamic-LSTM model for 

SPI3 prediction in China 

Dynamic-LSTM model improved prediction 

skills, especially in specific regions and seasons, 

more accurate in drought onset prediction 

Meteorological Drought 

Prediction with Heuristic146 

Use CANFIS, MLPNN and MLR 

models for EDI prediction in 

Uttarakhand State, India 

CANFIS and MLPNN models outperformed 

MLR for meteorological drought prediction, 

useful for decision-making in drought mitigation 

ARIMA-LSTM Hybrid for 

Short-term Drought 

Prediction147 

Propose ARIMA-LSTM hybrid for 

SPEI prediction in China 

Hybrid model (ARIMA-LSTM) showed higher 

prediction accuracy compared to single models, 

especially for longer-term drought forecasting 

 

Future Directions and Opportunities 
Addressing the challenges outlined above opens exciting 

avenues for the future of drought forecasting using AI 

models. Here are some key directions and opportunities: 

 

a) Enhanced Data Collection and Integration: Leveraging 

advancements in satellite imagery and Internet of Things 

(IoT) sensors for real-time data collection on various 

climatic variables. Promoting open-access data repositories 

to facilitate the sharing of climate, hydrological and socio-

economic data for model training. 

 
b) Hybrid Modeling Approaches: Combining the strengths 

of different AI models, such as CNNs, RNNs, SVMs and 

Fuzzy Logic, in hybrid frameworks for more robust 

predictions. Incorporating AI-driven insights into physically 

based models to improve accuracy and overcome 

limitations. 

 

c) Explainable AI and Model Transparency: Developing 

methods to explain AI model predictions, such as feature 

importance, SHAP (SHapley Additive exPlanations) and 

LIME (Local Interpretable Model-agnostic Explanations). 

Creating user-friendly interfaces for stakeholders to interact 

with AI-driven tools, enhancing trust and adoption. 

 

d) Focus on Vulnerable Regions and Communities: 
Developing region-specific AI models that account for the 

unique challenges faced by vulnerable communities. 

Empowering local stakeholders with the knowledge and 

tools to utilize AI-driven forecasts for decision-making. 

 

e) Climate Change Adaptation: Extending AI models to 

predict long-term climate trends and their implications for 

droughts. Using AI-driven forecasts to develop adaptive 

strategies for climate change resilience such as drought-

resistant crop varieties and water management plans. 

 

f) Collaboration and Knowledge Sharing: Encouraging 

collaboration between climate scientists, data scientists, 

policymakers and local communities to co-create effective 

solutions. Establishing international partnerships for data 

sharing, model development and capacity building in 

drought-prone regions. 

 

g) Ethical Considerations and Bias Mitigation: 
Developing ethical frameworks for AI-driven drought 
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forecasting, including privacy protection and fair use of data. 

Implementing strategies to detect and mitigate biases in AI 

models, ensuring equitable and unbiased predictions. 

 

Conclusion 
In conclusion, the integration of AI models into the realm of 

drought forecasting represents a significant advancement in 

our ability to mitigate the impacts of this enduring natural 

disaster. The evolution from traditional, empirical methods 

to sophisticated AI-driven approaches reflects a continuous 

quest for greater accuracy, timeliness and 

comprehensiveness in predicting drought events. The 

advantages offered by AI models, such as their ability to 

handle nonlinear relationships, to process vast datasets and 

to provide real-time monitoring, have revolutionized 

drought assessment and prediction. Techniques like Neural 

Networks, Support Vector Machines (SVM), Fuzzy Logic 

and Deep Learning have demonstrated unprecedented 

accuracy in capturing the complexities of meteorological 

droughts.  

 

These models enable stakeholders to make timely, informed 

decisions and implement proactive interventions to mitigate 

the impacts on ecosystems, agriculture, water resources and 

communities. Hybrid models, which combine the strengths 

of AI with traditional statistical or dynamical approaches, 

offer a promising pathway to enhance predictive capabilities 

further. The integration of Wavelet Transform with Neural 

Networks and other hybrid strategies has shown remarkable 

success in improving prediction accuracy and capturing non-

linear relationships. However, challenges such as limited 

data availability, model interpretability, scalability and 

computational resources remain pertinent. Overcoming 

these challenges presents opportunities for enhancing data 

collection methods, developing explainable AI techniques 

and tailoring solutions for vulnerable regions.  

 

The future of AI-driven drought forecasting holds immense 

promise. Collaborative efforts, innovative research and 

ethical practices will be crucial in harnessing the full 

potential of these models. By navigating these challenges 

and seizing opportunities for advancement, AI models can 

play a pivotal role in building resilience, adapting to 

changing climatic conditions and ensuring sustainable water 

and agricultural management on a global scale. The 

integration of AI into drought forecasting represents a 

paradigm shift towards a more proactive, data-driven and 

efficient approach in managing one of the most pressing 

challenges posed by climate change. Through continued 

research, collaboration and implementation, we can leverage 

the power of AI to mitigate the impacts of droughts, to 

protect ecosystems, to support agriculture and to safeguard 

the well-being of communities worldwide. 
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